Abstract

Support Vector Machine (SVM) learning from imbalanced datasets, as well as most learning machines, can show poor performance on the minority class because SVMs were designed to induce a model based on the overall error. To improve their performance in these kind of problems, a low-cost post-processing strategy is proposed based on calculating a new bias to adjust the function learned by the SVM. The proposed bias will consider the proportional size between classes in order to improve performance on the minority class. This solution avoids not only introducing and tuning new parameters, but also modifying the standard optimization problem for SVM training. Experimental results on 34 datasets, with different degrees of imbalance, show that the proposed method actually improves the classification on imbalanced datasets, by using standardized error measures based on sensitivity and g-means. Furthermore, its performance is comparable to well-known cost-sensitive and Synthetic Minority Over-sampling Technique (SMOTE) schemes, without adding complexity or computational costs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.