Abstract

Improved structural quality and radiative efficiency were observed in GaN thin films grown by metalorganic chemical vapor deposition on in situ-formed SiN and TiN porous network templates. The room temperature carrier decay time of 1.86 ns measured for a TiN network sample is slightly longer than that for a 200 μm-thick high quality freestanding GaN (1.73 ns). The linewidth of the asymmetric X-Ray diffraction (XRD) (1012) peak decreases considerably with the use of SiN and TiN layers, indicating the reduction in threading dislocation density. However, no direct correlation is yet found between the decay times and the XRD linewidths, suggesting that point defect and impurity related nonradiative centers are the main parameters affecting the lifetime.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.