Abstract

This study aimed to prepare a starch-based aerogel with microporous network structure, and to investigate its physicochemical properties after β-carotene encapsulation. Corn starch aerogels (CSA) prepared with sodium hexametaphosphate (SHMP) as a cross-linking agent and β-carotene encapsulation were evaluated in terms of morphology, long- and short-range molecular order, bioavailability, and stability. After encapsulating β-carotene, the morphology of SHMP-CSA showed that the aerogels presented agglomeration, and the relative crystallinity increased from 17.2% to 22.2%. The characteristic bands of β-carotene were not found in the FT-IR pattern, and the short-range molecular order of aerogel was decreased, proving that β-carotene was well embedded in the aerogel. During the simulated in vitro release process, β-carotene was almost completely released. After ultraviolet or light irradiation, the retention rate of β-carotene was much higher than that in the control group. These results demonstrated that SHMP-CSA encapsulation could effectively improve the stability of β-carotene.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call