Abstract

As β-carboline (βC) alkaloids, posing potential health risks, are present in a wide variety of foods, determining the exposure degrees of food to these alkaloids from dietary activity is key to ensuring food safety. Here, we developed a rapid and sensitive simultaneous analytical method for six βC alkaloids in food. We optimized the buffered QuEChERS method, which includes a clean-up process through dispersive solid phase extraction, to extract the target compounds from food matrices; then, these compounds were detected via liquid chromatography–tandem mass spectrometry. We established calibration ranges for each target compound and matrix within the range of 0.05–250 μg/kg, and verified linearity (R2 ≥ 0.99) and limit of quantitation (≤1.63 μg/kg). Furthermore, we validated trueness (85.8%–118.8%) and precision (≤18.7%) at three levels within the calibration range, including the lowest and highest concentrations. Finally, we employed the developed method to determine the βC alkaloid contents in 304 samples of 41 food items and dietary exposure of six βC alkaloids resulting from daily intake. Although βC alkaloids were detected in 86.2% of the samples, exposure level to the 41 food items was insufficient to cause toxicity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.