Abstract
A chip-level optical beam steerer is an inevitable choice for next-generation light detection and ranging (LiDAR). The research on optical phased array (OPA) is the most intriguing. However, the complexity of control and calibration speed limit the full potential as the number of channels increases. In this paper, an improved stochastic parallel gradient-descent algorithm combined with the Nesterov accelerated gradient method (NSPGD) is presented and applied in a 512-channel OPA. This algorithm can reduce the phase calibration time of large-scale OPA and demonstrates a better convergence performance than traditional SPGD. Compared with the traditional SPGD and hill-climbing (HC) algorithm, optimized convergence performance of NSPGD is shown. The side mode suppression ratio (SMSR) of over 10dB for 512-channel OPA is obtained with the NSPGD algorithm, and the convergence speed is twice that of traditional SPGD. In addition, a temperature-controlled OPA is also studied to stabilize the whole calibration system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.