Abstract

The main purpose of this research is to propose a new methodology to observe a class of time-fractional generalized fifth-order Korteweg–de Vries equations. Laplace transform along with a homotopy perturbation algorithm is utilized for the solution and analysis purpose in the current study. This extended technique provides improved and convergent series solutions through symbolic computation. The proposed methodology is applied to time-fractional Sawada–Kotera, Ito, Lax’s, and Kaup–Kupershmidt models, which are induced from a generalized fifth-order KdV equation. For validity purposes, obtained and existing results at integral orders are compared. Convergence analysis was also performed by computing solutions and errors at different values in a fractional domain. Dynamic behavior of the fractional parameter is also studied graphically. Simulations affirm the dominance of the proposed algorithm in terms of accuracy and fewer computations as compared to other available schemes for fractional KdVs. Hence, the projected algorithm can be utilized for more advanced fractional models in physics and engineering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.