Abstract

Modeling and simulation of vehicles in sand is critical for characterizing off-road mobility in arid and coastal regions. This paper presents improved algorithms for calculating sinkage (z) of wheeled vehicles operating on loose dry sand. The algorithms are developed based on 2737 tests conducted on sand with 23 different wheel configurations. The test results were collected from Database Records for Off-road Vehicle Environments (DROVE), a recently developed database of tests conducted with wheeled vehicles operating in loose dry sand. The study considers tire diameters from 36 to 124cm with wheel loads of 0.19–36.12kN. The proposed algorithms present a simple form of sinkage relationships, which only require the ratio of the wheel ground contact pressure and soil strength represented by cone index. The proposed models are compared against existing closed form solutions defined in the Vehicle Terrain Interface (VTI) model. Comparisons suggest that incorporating the proposed models into the VTI model can provide comparable predictive accuracy with simpler algorithms. In addition to simplicity, it is believed that the relationship between cone index (representing soil shear strength) and the contact pressure (representing the applied pressure to tire-soil interface) can better capture the physics of the problem being evaluated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.