Abstract

Impact ionization coefficients are important material properties that determine the breakdown voltage and safe operating area of power devices. This paper presents an anisotropy breakdown model with modified parameters that reproduces well experimental results for both peak breakdown voltages and sharp drops in breakdown voltage at high junction–termination–extension (JTE) acceptor concentrations. Using a newly developed simulation model, we optimized the edge termination and current-spreading layers (CSLs) and obtained a low specific on-resistance (RONA) of 11.6 mΩcm2 for a breakdown voltage (BVDSS) of approximately 4 kV and a high-avalanche-withstanding energy robustness of 4.6 Jcm-2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.