Abstract
We analyze the influence of different oxidation methods on the chemical passivation quality of silicon oxide-nanolayers on crystalline silicon wafers with surface photo voltage and quasi-steady-state photo conductance measurements. We present a simple method by means of rapid thermal oxidation (RTO) and subsequent annealing in forming gas, which requires no complex surface pre-treatment or surface pre-conditioning after cleaning. This technique allows a reproducible preparation of high-quality ultra-thin oxide-nanolayers (1.3–1.6nm) with a nearly intrinsic energetic distribution of interface states and a defect density of states of only 1×1012cm−2eV−1 at the minimum of the distribution. These results are compared with silicon oxide-nanolayers prepared by wet chemical oxidation and plasma oxidation where only a slight reduction of the interface defect density is achieved by subsequent anneal in forming gas environment. Furthermore, it is shown that applying the RTO oxide-nanolayer as an intermediate layer between Si and an a-SiNx:H layer, leads to a significant improvement of the surface passivation quality.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.