Abstract

Reliable segmentation of abnormal nuclei in cervical cytology is of paramount importance in automation-assisted screening techniques. This paper presents a general method for improving the segmentation of abnormal nuclei using a graph-search based approach. More specifically, the proposed method focuses on the improvement of coarse (initial) segmentation. The improvement relies on a transform that maps round-like border in the Cartesian coordinate system into lines in the polar coordinate system. The costs consisting of nucleus-specific edge and region information are assigned to the nodes. The globally optimal path in the constructed graph is then identified by dynamic programming. We have tested the proposed method on abnormal nuclei from two cervical cell image datasets, Herlev and H and E stained liquid-based cytology (HELBC), and the comparative experiments with recent state-of-the-art approaches demonstrate the superior performance of the proposed method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call