Abstract

A general method is reported for improving the segmentation of abnormal cell nuclei in cervical cytology images. In automation-assisted reading of cervical cytology, one of the essential steps is the segmentation of nuclei. Despite some progress, there is a need to improve the sensitivity, particularly the segmentation of abnormal nuclei. Our method starts with pre-segmenting the nucleus to define the coarse center and size of nucleus, which is used to construct a graph by image unfolding that maps ellipse-like border in the Cartesian coordinate system to lines in the polar coordinate system. The cost function jointly reflects properties of nucleus border and nucleus region. The prior constraints regarding the context of nucleus-cytoplasm position are utilized to modify the local cost functions. The globally optimal path in the constructed graph is then identified by dynamic programming with an iterative approach ensuring an optimal closed contour. Validation of our method was performed on abnormal nuclei from two cervical cell image datasets, Herlev and H&E stained manual liquid-based cytology (HEMLBC). Compared with five state-of-the-art approaches, our graph-search based method shows superior performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call