Abstract

The establishment of fuzzy relations and the fuzzification of time series are the top priorities of the model for predicting fuzzy time series. A lot of literature studied these two aspects to ameliorate the capability of the forecasting model. In this paper, we proposed a new method(FTSOAX) to forecast fuzzy time series derived from the improved seagull optimization algorithm(ISOA) and XGBoost. For increasing the accurateness of the forecasting model in fuzzy time series, ISOA is applied to partition the domain of discourse to get more suitable intervals. We improved the seagull optimization algorithm(SOA) with the help of the Powell algorithm and a random curve action to make SOA have better convergence ability. Using XGBoost to forecast the change of fuzzy membership in order to overcome the disadvantage that fuzzy relation leads to low accuracy. We obtained daily confirmed COVID-19 cases in 7 countries as a dataset to demonstrate the performance of FTSOAX. The results show that FTSOAX is superior to other fuzzy forecasting models in the application of prediction of COVID-19 daily confirmed cases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.