Abstract

Probabilistic methods and statistical learning theory have been shown to provide approximate solutions to difficult control problems. Unfortunately, the number of samples required in order to guarantee stringent performance levels may be prohibitively large. This paper introduces bootstrap learning methods and the concept of stopping times to drastically reduce the bound on the number of samples required to achieve a performance level. We then apply these results to obtain more efficient algorithms which probabilistically guarantee stability and robustness levels when designing controllers for uncertain systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.