Abstract

Extreme ultraviolet (EUV) lithography with reflective photomasks continues to be a potential patterning technology for high volume manufacturing at the 7 nm technology node and beyond. EUV photomasks with alternative materials to the commonly used Mo/Si multilayer (ML) reflector and patterned Ta-based absorber (both of which are known to require shadow effect corrections and lead to large through-focus pattern placement errors) are being actively explored. Because the reflective bandwidth of a Ru/Si ML is significantly wider than the reflective bandwidth of a Mo/Si ML and the effective reflectance plane in Ru/Si is closer to the ML surface, Ru/Si ML coatings may be viable alternatives to the Mo/Si ML coatings that are commercially available today because they will lead to smaller mask 3D effects. In this paper, increases in the peak reflectivity and the reflective bandwidth of Ru/Si ML reflectors by using B4C interlayers to improve the Ru-Si interfaces are discussed. The conclusions of this paper are supported with the results of both experimental measurements and rigorous simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.