Abstract

Deep Reinforcement Learning (RL) demonstrates excellent performance on tasks that can be solved by trained policy. It plays a dominant role among cutting-edge machine learning approaches using multi-layer Neural networks (NNs). At the same time, Deep RL suffers from high sensitivity to noisy, incomplete, and misleading input data. Following biological intuition, we involve Spiking Neural Networks (SNNs) to address some deficiencies of deep RL solutions. Previous studies in image classification domain demonstrated that standard NNs (with ReLU nonlinearity) trained using supervised learning can be converted to SNNs with negligible deterioration in performance. In this paper, we extend those conversion results to the domain of Q-Learning NNs trained using RL. We provide a proof of principle of the conversion of standard NN to SNN. In addition, we show that the SNN has improved robustness to occlusion in the input image. Finally, we introduce results with converting full-scale Deep Q-network to SNN, paving the way for future research to robust Deep RL applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.