Abstract
This paper introduces a new estimator, of ridge parameter k for ridge regression and then evaluated by Monte Carlo simulation. We examine the performance of the proposed estimators compared with other well-known estimators for the model with heteroscedastics and/or correlated errors, outlier observations, non-normal errors and suffer from the problem of multicollinearity. It is shown that proposed estimators have a smaller MSE than the ordinary least squared estimator (LS), Hoerl and Kennard (1970) estimator (RR), jackknifed modified ridge (JMR) estimator, and Jackknifed Ridge M-estimator (JRM).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.