Abstract
The fungus Ashbya gossypii is an important industrial producer of riboflavin, i.e. vitamin B2. In order to meet the constantly increasing demands for improved production processes, it appears essential to better understand the underlying metabolic pathways of the vitamin. Here, we used a highly sophisticated set-up of parallel 13C tracer studies with labeling analysis by GC/MS, LC/MS, 1D, and 2D NMR to resolve carbon fluxes in the overproducing strain A. gossypii B2 during growth and subsequent riboflavin production from vegetable oil as carbon source, yeast extract, and supplemented glycine. The studies provided a detailed picture of the underlying metabolism. Glycine was exclusively used as carbon-two donor of the vitamin’s pyrimidine ring, which is part of its isoalloxazine ring structure, but did not contribute to the carbon-one metabolism due to the proven absence of a functional glycine cleavage system. The pools of serine and glycine were closely connected due to a highly reversible serine hydroxymethyltransferase. Transmembrane formate flux simulations revealed that the one-carbon metabolism displayed a severe bottleneck during initial riboflavin production, which was overcome in later phases of the cultivation by intrinsic formate accumulation. The transiently limiting carbon-one pool was successfully replenished by time-resolved feeding of small amounts of formate and serine, respectively. This increased the intracellular availability of glycine, serine, and formate and resulted in a final riboflavin titer increase of 45%.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have