Abstract
Recognition of abnormal patterns in control charts provides clues to reveal potential quality problems in the manufacturing processes. One potentially popular approach for recognizing different control chart patterns (CCPs) is to develop heuristics based on various shape features of the patterns. The advantage of this approach is that the users can easily understand how a particular pattern is identified. However, consistency in the recognition performance is found to be considerably poor in the heuristics approach. Since shape features represent the main characteristics of the patterns in a condensed form, artificial neural network (ANN) with features extracted from the process data as input vector representation can facilitate efficient pattern recognition with a smaller network size. In this paper, a set of seven shape features is selected, whose magnitudes are independent of the process mean and standard deviation under a special representation of the sampling interval in the control chart plot. Based on these features, the CCPs are recognized using a multilayered perceptron neural network trained by back-propagation algorithm. The recognizer can recognize all the eight commonly observed CCPs. Extensive performance evaluation of this recognizer is carried out using simulated pattern data. Numerical results indicate that the developed ANN recognizer can perform well in real time process control applications with respect to both recognition accuracy and consistency.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have