Abstract

In this paper, we propose an improved quantum algorithm for the minimum mean square error-based massive multiple-input multiple-output (MIMO) uplink. The new algorithm can reduce the dependency on the assumptions on the input vector, the channel matrix entries and the low rank of the channel matrix, which are indispensable in our previous results. Our improved quantum algorithm applies the quantum block-encoding technology, which depends on the quantum-accessible data structure. Moreover, we design an efficient algorithm for outputting classical data, which makes sure that output data can be utilized in classical devices. Both theoretically mathematical analyses and simulation realizations in massive MIMO systems confirm the applicability of the improved quantum algorithm. With desired precision, and theoretical and numerical analysis, our improved quantum algorithm can achieve a quadratic or even an exponential speedup over classical counterparts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.