Abstract

For the massive multiple-input multiple-output (MIMO) uplink, the linear minimum mean square error (MMSE) detector is near-optimal but involves undesirable matrix inversion. In this paper, we propose a low-complexity soft-output detector based on the simplified Broyden–Fletcher–Goldfarb–Shanno method to realize the matrix-inversion-free MMSE detection iteratively. To accelerate convergence with minimal computational overhead, an appropriate initial solution is presented leveraging the channel-hardening property of massive MIMO. Moreover, we employ a low-complexity approximated approach to calculating the log-likelihood ratios with negligible performance losses. Simulation results finally verify that the proposed detector can achieve the near-MMSE performance with a few iterations and outperforms the recently reported linear detectors in terms of lower complexity and faster convergence for the realistic massive MIMO systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call