Abstract
To improve (19) F flip angle calibration and compensate for B1 inhomogeneities in quantitative (19) F MRI of sparse molecular epitopes with perfluorocarbon (PFC) nanoparticle (NP) emulsion contrast agents. Flip angle sweep experiments on PFC-NP point source phantoms with three custom-designed (19) F/(1) H dual-tuned coils revealed a difference in required power settings for (19) F and (1) H nuclei, which was used to calculate a calibration ratio specific for each coil. An image-based correction technique was developed using B1 -field mapping on (1) H to correct for (19) F and (1) H images in two phantom experiments. Optimized (19) F peak power differed significantly from that of (1) H power for each coil (P < 0.05). A ratio of (19) F/(1) H power settings yielded a coil-specific and spatially independent calibration value (surface: 1.48 ± 0.06; semicylindrical: 1.71 ± 0.02, single-turn-solenoid: 1.92 ± 0.03). (1) H-image-based B1 correction equalized the signal intensity of (19) F images for two identical (19) F PFC-NP samples placed in different parts of the field, which were offset significantly by ~66% (P < 0.001), before correction. (19) F flip angle calibration and B1 -mapping compensations to the (19) F images employing the more abundant (1) H signal as a basis for correction resulted in a significant change in the quantification of sparse (19) F MR signals from targeted PFC NP emulsions.
Accepted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have