Abstract
AbstractA kind of molecular‐level dispersed and highly oriented graphene monolayer nanocomposite film was successfully obtained by in situ reduction of phenyl isocyanate functionalized graphite oxide (RPIGO) in N,N‐dimethylformamide in the presence of polystyrene (PS). Atomic force microscopy and transmission electron microscopy results show that the RPIGO monolayers were not only homogeneously intercalated into the PS matrix but also arranged parallel to the surface of the nanocomposite films. Because of the efficient interaction between the graphene monolayers and PS matrix, the mechanical properties of the graphene‐based nanocomposite films improved significantly. Compared with the pure PS film, a 28.4% increase in the Young's modulus and a 27.8% improvement in the tensile strength of the RPIGO–PS nanocomposites films were obtained with the addition of only 0.5 wt % graphite oxide. The glass‐transition temperature and onset degradation temperature of PS also increased from 96.6 and 427°C to 103.2 and 439°C, respectively. The improvement of the properties was mainly due to the large lateral thickness ratio and the high orientation of graphene monolayers. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have