Abstract
BackgroundFatty alcohols are widely used in industrial chemicals. The biosynthetic pathways for fatty alcohols are diverse and widely existing in nature. They display a high capacity to produce fatty alcohols by the metabolic engineering of different microbe hosts. Direct recycling of carbon dioxide to fatty alcohols can be achieved by introducing a fatty alcohol-producing pathway into photosynthetic cyanobacteria. According to our precious reports, a relatively low yield of fatty alcohols was obtained in the genetically engineered cyanobacterium Synechocystis sp. PCC 6803.ResultsThe photosynthetic production of fatty alcohols in Synechocystis sp. PCC 6803 was improved through heterologously expressing fatty acyl-Coenzyme A (acyl-CoA) reductase gene maqu_2220 from the marine bacterium Marinobacter aquaeolei VT8. Maqu_2220 has been proved to catalyze both the four-electron reduction of fatty acyl-CoA or acyl-Acyl Carrier Protein (acyl-ACP) and the two-electron reduction of fatty aldehyde to fatty alcohol. The knockout of the aldehyde-deformylating oxygenase gene (sll0208) efficiently blocked the hydrocarbon accumulation and redirected the carbon flux into the fatty alcohol-producing pathway. By knocking-out both sll0208 and sll0209 (encoding an acyl-ACP reductase), the productivity of fatty alcohols was further increased to 2.87 mg/g dry weight.ConclusionsThe highest yield of fatty alcohols was achieved in cyanobacteria by expressing the prokaryotic fatty acyl-CoA reductase Maqu_2220 and knocking-out the two key genes (sll0208 and sll0209) that are involved in the alka(e)ne biosynthesis pathway. Maqu_2220 was demonstrated as a robust enzyme for producing fatty alcohols in cyanobacteria. The production of fatty alcohols could be significantly increased by blocking the hydrocarbon biosynthesis pathway.
Highlights
IntroductionThe biosynthetic pathways for fatty alcohols are diverse and widely existing in nature
Fatty alcohols are widely used in industrial chemicals
Production of fatty alcohols by heterologously expressing the maqu_2220 gene in Synechocystis The maqu_2220 gene from M. aquaeolei VT8 was expressed under the control of the promoter PpetE (Nucleotide sequences listed in the Additional file 3); the Omega cassette [40] which harbors a spectinomycin resistance gene was used as a selection marker (Figure 2A)
Summary
The biosynthetic pathways for fatty alcohols are diverse and widely existing in nature. They display a high capacity to produce fatty alcohols by the metabolic engineering of different microbe hosts. Cyanobacteria are non-food-based feedstock resources that can use non-productive land and water sources. They are able to convert solar energy and CO2 for the synthesis (ADO) has been identified in cyanobacteria [24]. A side pathway responsible for a one-step conversion of fatty aldehyde to free fatty acid by an aldehyde dehydrogenase (Orf0489) was reported in the cyanobacterium Synechococcus elongatus PCC 7942 [25]. PCC 6803 (hereafter Synechocystis) [26]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.