Abstract
An improved probabilistic neural network (IPNN) algorithm for use in chemical sensor array pattern recognition applications is described. The IPNN is based on a modified probabilistic neural network (PNN) with three innovations designed to reduce the computational and memory requirements, to speed training, and to decrease the false alarm rate. The utility of this new approach is illustrated with the use of four data sets extracted from simulated and laboratory-collected surface acoustic wave sensor array data. A competitive learning strategy, based on a learning vector quantization neural network, is shown to reduce the storage and computation requirements. The IPNN hidden layer requires only a fraction of the storage space of a conventional PNN. A simple distance-based calculation is reported to approximate the optimal kernel width of a PNN. This calculation is found to decrease the training time and requires no user input. A general procedure for selecting the optimal rejection threshold for a PNN-based algorithm using Monte Carlo simulations is also demonstrated. This outlier rejection strategy is implemented for an IPNN classifier and found to reject ambiguous patterns, thereby decreasing the potential for false alarms.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have