Abstract
Automatic license plate recognition (ALPR) systems are widely used for various applications, including traffic control, law enforcement, and toll collection. However, the performance of ALPR systems is often compromised in challenging weather and lighting conditions. This research aims to improve the effectiveness of ALPR systems in foggy, low-light, and rainy weather conditions using a hybrid preprocessing methodology. The research proposes the combination of dark channel prior (DCP), non-local means denoising (NMD) technique, and adaptive histogram equalization (AHE) algorithms in CIELAB color space. And used the Python programming language comparisons for SSIM and PSNR performance. The results showed that this hybrid approach is not merely robust to a variety of challenging conditions, including challenging weather and lighting conditions but significantly more accurate for existing ALPR systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of Engineering and Technology Innovation
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.