Abstract
In recent years, automatic license plate recognition (ALPR) system is applied in some traffic-related applications based on deep learning. However, the new ALPR is very difficult to obtain high detection and recognition rates for oblique car license plate (LP). Recently, Silva et al. [5] proposed a warped planar object detection (WPOD) based on deep convolutional neural network (CNN) to overcome the oblique views of LP. Although the WPOD network can achieve the location and rectification of LPs, the loss function of WPOD renders the confidence parameter due to high computational complexity. This also leads to WPOD network cannot locate the optimal LP bounding box. In order to further improve the accuracy of ALPR system, we develop a simple intersection over union (IOU) algorithm to speed up the calculating process of confidence. In this paper, the four-vertex coordinates of the label bounding box and prediction bounding box of oblique LP are used to generate two rectangular boxes, and then a simple IOU algorithm is used to fast calculate the approximate value of IOU. Simulation results show that the proposed ALPR system can arrive a high accuracy of LP recognition about 95.7% on an average. In addition, the proposed system also can achieve higher recognition rate about 1% when compared to the Silva’s ALPR system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.