Abstract

White matter impairments caused by gliomas can lead to functional disorders. In this study, we predicted aphasia in patients with gliomas infiltrating the language network using machine learning methods. We included 78 patients with left-hemispheric perisylvian gliomas. Aphasia was graded preoperatively using the Aachen aphasia test (AAT). Subsequently, we created bundle segmentations based on automatically generated tract orientation mappings using TractSeg. To prepare the input for the support vector machine (SVM), we first preselected aphasia-related fiber bundles based on the associations between relative tract volumes and AAT subtests. In addition, diffusion magnetic resonance imaging (dMRI)-based metrics [axial diffusivity (AD), apparent diffusion coefficient (ADC), fractional anisotropy (FA), and radial diffusivity (RD)] were extracted within the fiber bundles' masks with their mean, standard deviation, kurtosis, and skewness values. Our model consisted of random forest-based feature selection followed by an SVM. The best model performance achieved 81% accuracy (specificity = 85%, sensitivity = 73%, and AUC = 85%) using dMRI-based features, demographics, tumor WHO grade, tumor location, and relative tract volumes. The most effective features resulted from the arcuate fasciculus (AF), middle longitudinal fasciculus (MLF), and inferior fronto-occipital fasciculus (IFOF). The most effective dMRI-based metrics were FA, ADC, and AD. We achieved a prediction of aphasia using dMRI-based features and demonstrated that AF, IFOF, and MLF were the most important fiber bundles for predicting aphasia in this cohort.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.