Abstract
In recent times, the importance of peptides in the biomedical domain has received increasing concern in terms of their effect on multiple disease treatments. However, before successful large-scale implementation in the industry, accurate identification of peptide toxicity is a vital prerequisite. The existing computational methods have reached good results from toxicity prediction, and we present an improved model based on different deep learning architectures. The modification mainly focuses on two aspects: sequence encoding and variational information bottlenecks. Consequently, one of our modified plans shows an obvious increase in sensitivity, while the rest show good performance meanwhile adding novelty in the peptide toxicity prediction domain. In detail, our best model could achieve an accuracy of 97.38 and 95.03% in protein and peptide toxicity predictions, respectively. The performance was superior to previous predictors on the same datasets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.