Abstract

g-C3N4 and TiO2 hybrid structures are synthesized by means of a simple impregnation method having good photoactivities for the degradation of phenol under UV irradiation. From the wide structural and surface characterization we have stated that the presence of g-C3N4 notably affect the surface feature of TiO2 (surface area and pore size distribution). Enhanced photoactivities have been obtained for composites systems. The best result was obtained for 2 wt% loading of g-C3N4 leading to a 70% of improvement with respect to bare TiO2 in the reaction rate. The effective charge carrier separation was proposed as the responsible of such improved photoactivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.