Abstract
77K nitrogen adsorption was the most widely used technique for determining surface area and pore size distribution of coal. Brunauer–Emmett–Teller (BET) and Barrett–Joyner–Halenda (BJH) model are commonly used analytic methods for adsorption/desorption isotherm. A Chinese anthracite coal is tested in this study using an improved experimental method and adsorption isotherm analyzed by three adsorption mechanisms at different relative pressure stages. The result shows that the micropore filling adsorption predominates at the relative pressure stage from 6.8E−7 to 9E−3. Theoretically, BET and BJH model are not appropriate for analyzing coal samples which contain micropores. Two new analytic procedures for coal surface area and pore size distribution calculation are developed in this work. The results show that BET model underestimates surface area, and micropores smaller than 1.751nm account for 35.5% of the total pore volume and 74.2% of the total surface area. The investigation of surface area and pore size distribution by incorporating the influence of micropore is significant for understanding adsorption mechanism of methane and carbon dioxide in coal.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have