Abstract
Ferromagnetic (FM) interlayer exchange coupling of ion-beam sputtered Fe/Ge multilayers was investigated by off-specular polarized neutron scattering measurements. We observed a monotonously growing correlation of magnetic moments in the out-of-plane direction with decreasing Ge thickness. The magnetic properties of the multilayers with and without the FM interlayer exchange coupling agree well with the three- and two-dimensional random anisotropy model, respectively, assuming an FM interlayer exchange coupling comparable to the direct exchange interaction within the sample plane. The results of the Fe/Ge multilayers were used to invoke FM interlayer exchange coupling in a neutron polarizing supermirror in order to extend its bandwidth. Typically, the bandwidth is limited due to a Curie temperature close to room temperature of the thinnest Fe layers with less than 3 nm. We propose a modified layer sequence of the neutron polarizing supermirror, where the minimum Fe thickness was set to 3.5 nm, whereas the Ge thickness was reduced. A performance test of the neutron polarizing supermirror showed that the FM interlayer exchange coupling contributed to the presence of the magnetization comparable to the bulk and resulted in a marked extension in the bandwidth.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.