Abstract

A SnO2 thin layer was deposited between the diamond and Schottky electrode to fabricate the metal–insulator–semiconductor Schottky barrier diode (MIS-SBD). The current–voltage and current–voltage–temperature characteristics in the range from 25 °C to 150 °C of diamond SBD were investigated. The Schottky barrier height of MIS-SBD is 1.84 eV. Compared with metal–semiconductor (MS) SBD, the diamond MIS-SBD shows more stable values of barrier height and ideality factor as temperature increased. The difference in interface states density between MIS-SBD and MS-SBD is almost 2 orders of magnitude, and the breakdown voltage was increased from 102 to 123 V after introducing SnO2 layer. These results indicate that the MIS-SBD with SnO2 insulating layer shows a better performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call