Abstract

Differing from the conventional peak-to-peak method using two neighboring spectral peaks in the frequency-domain fringe spectrum of the spectral response of a Fabry-Perot etalon to a femtosecond laser, which contains N spectral peaks equally spaced with a spacing of the etalon free spectral range (FSR), the proposed method employs a pair of spectral peaks with a spacing of an integer multiple k (k ≫ 1) of FSR for measurement of the etalon cavity length d with a reduced measurement error. Under the constrain of the total N spectral peaks obtainable in the finite spectral range of the femtosecond laser, the optimized k is identified to be N∕2 in consideration of an averaging operation using N - k samples of d to achieve the minimum measurement error. The feasibility of the proposed method is demonstrated by experimental results with an uncertainty analysis based on "Guides to the Expression of Uncertainty in Measurement".

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.