Abstract

PdPt bimetallic nanoparticles on carbon-based supports functioning as advanced electrode materials have attracted attention due to their low content of noble metals and high catalytic activity for fuel cell reactions. Glassy carbon (GC)-supported Pt and PdPt nanoparticles, as promising catalysts for the oxygen reduction reaction (ORR), were prepared by the electrochemical deposition of Pt and the subsequent spontaneous deposition of Pd. The obtained electrodes were examined using X-ray Photoelectron Spectroscopy (XPS), Atomic Force Microscopy (AFM), and electroanalytical techniques. An XPS analysis of the PdPt/GC with the highest ORR performance revealed that the stoichiometric ratio of Pd: Pt was 1:2, and that both Pt and Pd were partially oxidized. AFM images of PdPt2/GC showed the full coverage of GC with PdPt nanoparticles with sizes from 100–300 nm. The ORR activity of PdPt2/GC in an acid solution approached that of polycrystalline Pt (E1/2 = 0.825 V vs. RHE), while exceeding it in an alkaline solution (E1/2 = 0.841 V vs. RHE). The origin of the improved ORR on PdPt2/GC in an alkaline solution is ascribed to the presence of a higher amount of adsorbed OH species originating from both PtOH and PdOH that facilitated the 4e-reaction pathway.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call