Abstract

Amidst the rapid expansion of the global economy, the demand for energy has escalated. The depletion of traditional energy sources coupled with environmental pollution concerns has catalyzed a shift towards the development and utilization of clean, renewable energy. Biogas, as a renewable energy source, provides diverse applications and holds the potential to alleviate energy shortages. Recently, biogas dry reforming technology has garnered substantial attention as a significant pathway for renewable energy utilization, particularly in the development and optimization of catalysts. Contemporary research predominantly focuses on enhancing the activity and stability of catalysts, with particular emphasis on their resistance to coking and sintering. This review delineates the classification of biogas dry reforming catalysts, their catalytic activity, and issues related to carbon deposition, contrasting biogas dry reforming with traditional dry reforming in catalyst design. It synthesizes numerous studies from recent years aimed at mitigating carbon deposition during the biogas dry reforming process and boosting catalytic activity via active components, carriers, and promoters in both precious and non-precious metal catalysts. Furthermore, it discusses the current challenges of biogas dry reforming technology and outlines prospective future development trends. This discussion provides an in-depth understanding of biogas dry reforming technology and catalyst design, offering insights and recommendations for future research and industrial applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.