Abstract

To improve initial osteoblast adhesion and subsequent osseointegration, TiO2 nanotubes layer was constructed on the titanium (Ti) surface by anodic oxidation (AO), with an additional hydroxyapatite (HA) coating to form the AO/HA surface. Tests on in vitro cellular activity displayed that the AO surface, especially the AO/HA surface, promoted initial adhesion, proliferation and differentiation of osteoblast cells. The modified AO and AO/HA surfaces further presented an up-regulated gene expression of osteogenic and adhesion markers collagen type 1 (COL), osteopontin (OPN), osteocalcin (OCN) and vinculin. In addition, in vivo experiments with a rat model demonstrated that the AO surface, particularly the AO/HA surface, achieved earlier osseointegration and a superior bone bonding ability compared with Ti. Our study shed light on a synergistic role played by nanotopography and HA in promoting osteoblast adhesion, proliferation, differentiation and osseointegration, thus suggesting a promising method for better modifying the implant surface.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.