Abstract

Ni powders coated by deposition of TiO2 or controlled oxidation to NiO develop substantial resistance to corrosion. Chymotrypsin immobilized to these coated Ni supports shows very high stability of activity on storage. Chymotrypsin immobilized by adsorption and glutaraldehyde crosslinking was fairly rapidly eluted under operational conditions in the presence of substrate. If 3-aminopropyltriethoxysilane (APS) was used to produce a covalent linkage, desorption of enzyme still occurred because of relatively unstable bonding of the silane to the oxide surface. A more stable attachment was produced by joining together many silane links with a layer of polyglutaraldehyde. The mechanism of action of APS as a coupling agent under these conditions is discussed. gamma-Fe2O3, and particularly a Mn-Zn ferrite, are suitable magnetic support materials available with smaller particle sizes. Particles below 1 mum give the expected higher specific activities of immobilized enzymes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.