Abstract

Background and objectiveIn the observed medical ultrasound image, there is always some speckle noise which suppress the details of images and impairs the value of ultrasonography in diagnosis. This work present a novel despeckling method which effectively exploit non-local self-similarity for restoration of corrupted ultrasound images. The proposed approach consist of three stages. First, an improved optimized Bayesian non-local means (OBNLM) filter in which pixel patch is represented by a new vector form is used to get an preliminary estimation of noise-free image. Then, a new index called redundancy index of each pixel patch is calculated for determining which areas in image have low redundancy. Finally, another new vector form is used to represent pixel patch in areas with low redundancy obtained in second stage to recalculate filtered output, and the recalculated output is superimposed on preliminary estimation to generate final result of proposed method. MethodsThe performance of proposed approach is evaluated on simulated and real ultrasound images. The experiments conducted on various test image illustrate that our proposed algorithm outperforms the various classic denoising algorithms included block matching 3-D (BM3D) and optimized Bayesian non-local means filter. ResultsThe objective evaluations and subjective visual inspection of denoised simulated and real ultrasound images demonstrate that the proposed algorithm can achieve superior performance than previously developed methods for speckle noise suppression. ConclusionsThe combined use of two new representations improve denoising and edge preserving capability of proposed filter apparently. The success of proposed algorithm would help in building the lay foundation for inventing the despeckling algorithms that can make fuller use of information in images.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.