Abstract

PEGT/PBT (polyethylene glycol terephthalate/polybutylene terephthalate) copolymer matrices with three different surface coatings [calcium-phosphate (Ca-P), collagen, and gas plasma] were placed into dorsal skinfold chambers of 24 balb/c mice. Untreated PEGT/PBT matrices served as the controls. The basal surfaces of the implants directly contacted the striated skin muscle. Neovascularization of the implants was analyzed by intravital fluorescence microscopy. Microcirculatory observations were performed in the surrounding skin muscle, at the border zone of the implant, and in the center of the implant. The functional vessel density (FVD; mm/mm<sup>2</sup>), as the length of perfused microvessels per observation area, was measured by computer-assisted analysis. The FVD served as the parameter of neovascularization. At the end of the protocol, histological observation of hematoxylin/eosin-standard-stained sections was performed by light microscopy. The FVD in the center of the implant on day 8 was only observed in gas-plasma-coated (8.8 ± 10.2 mm/mm<sup>2</sup>) and Ca-P-coated implants (0.8 ± 2.0 mm/mm<sup>2</sup>). None of the other groups showed perfused microvessels in the center of the implant on day 8 (p < 0.05). The FVD values in the center of the gas-plasma-coated and the Ca-P-coated implants were 20.7 ± 8.2 and 19.2 ± 15.5 mm/mm<sup>2</sup> as compared with 7.1 ± 17.4 and 7.7 ± 5.9 mm/mm<sup>2</sup> for collagen-coated and untreated implants on day 16. The histological examination confirmed the profound microvascular ingrowth into the matrix pores of the gas-plasma-treated and the Ca-P-coated copolymer matrices in the center of the implants. The study showed that the ingrowth of microvessels into PEGT/PBT matrices can be accelerated by Ca-P coating and gas plasma treatment in the dorsal skinfold chamber in mice.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call