Abstract
Ti-based anode materials in sodium ion batteries have attracted extensive interests due to its abundant resources, low toxicity, easy synthesis and long cycle life. However, low Coulombic efficiency and limited specific capacity affect their applications. Here, cubic-phase TiP2O7 is examined as anode materials, using in-situ/ex-situ characterization techniques. It is concluded that the redox reactions of Ti4+/Ti3+ and Ti3+/Ti0 consecutively occur during the discharge/charge processes, both of which are highly reversible. These reactions make the specific capacity of TiP2O7 even higher than the case of TiO2 that only contains a simple anion, O2−. Interestingly, Ti species participate only one of the redox reactions, due to the remarkable difference in local structures related to the sodiation process. The stable discharge/charge products in TiP2O7 reduce the side reactions and improve the Coulombic efficiency as compared to TiO2. These features make it a promising Ti-based anode for sodium ion batteries. Therefore, TiP2O7@C microflowers exhibit excellent electrochemical performances, ~ 109 mAh·g−1 after 10,000 cycles at 2 A·g−1, or 95.2 mAh·g−1 at 10 A·g−1. The results demonstrate new opportunities for advanced Ti-based anodes in sodium ion batteries.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.