Abstract
Reconstructing a three-dimensional (3D) structure from a single two-dimensional training image (TI) is a challenging issue. Multiple-point statistics (MPS) is an effective method to solve this problem. However, in the traditional MPS method, errors occur while statistical features of reconstruction, such as porosity, connectivity, and structural properties, deviate from those of TI. Due to the MPS reconstruction mechanism that the voxel being reconstructed is dependent on the reconstructed voxel, it may cause error accumulation during simulations, which can easily lead to a significant difference between the real 3D structure and the reconstructed result. To reduce error accumulation and improve morphological similarity, an improved MPS method based on porosity matching is proposed. In the reconstruction, we search the matching pattern in the TI directly. Meanwhile, a multigrid approach is also applied to capture the large-scale structures of the TI. To demonstrate its superiority over the traditional MPS method, our method is tested on different sandstone samples from many aspects, including accuracy, stability, generalization, and flow characteristics. Experimental results show that the reconstruction results by the improved MPS method effectively match the CT sandstone samples in correlation functions, local porosity distribution, morphological parameters, and permeability.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have