Abstract
Many coal seam gas (CSG) reservoirs (also known as coalbed methane) can have low permeability, require stimulation to produce economic rates and often exhibit pressure-dependent permeability (PDP) behaviour. Defining PDP behaviour in coal using reservoir simulation is a non-unique problem based on the uncertainty in coal properties and input parameters. Recent research demonstrated that an integrated analysis coupling of a diagnostic fracture injection test analysis, hydraulic fracture modelling and reservoir simulation can better characterise PDP behaviour in order to evaluate stimulation effectiveness in coals (Johnson et al. 2020). The present work aims to improve the recently developed model by including multilayer and permeability anisotropy effects. A reservoir model with multiple coal layers is established in a pressure-dependent reservoir simulator, based on the image log interpretations. Permeability anisotropy in the formation is realised by introducing heterogeneous distribution of permeability in different directions. Modelling results indicate effects of aspect ratio between multilayers on the pressure distribution and production history. A lower permeability anisotropy ratio yields better well productivity, and higher stimulation is required to increase the stimulated reservoir volume to maximise gas recovery. The improved model and workflow are applicable to other CSG fields for defining key variables where hydraulic fracturing performance has been unable to overcome limitations based on pressure dependency, often accompanied by low-permeability behaviour. This workflow has applications in Australia and many areas (e.g. China and India) exhibiting low-permeability and PDP behaviour and where only typically collected field data is available.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have