Abstract
The design of trajectory tracking controllers for smart driving cars still faces problems, such as uncertain parameters and it being time-consuming. To improve the tracking performance of the trajectory tracking controller and reduce the computation of the controller, this paper proposes an improved model predictive control (MPC) method based on fuzzy control and an online update algorithm. First, a vehicle dynamics model is constructed and a feedforward MPC controller is designed; second, a real-time updating method of the time domain parameters is proposed to replace the previous method of empirically selecting the time domain parameters; lastly, a fuzzy controller is proposed for the real-time adjustment of the weight coefficient matrix of the model predictive controller according to the lateral and heading errors of the vehicle, and a state matrix-based cosine similarity updating mechanism is developed for determining the updating nodes of the state matrix to reduce the controller computation caused by the continuous updating of the state matrix when the longitudinal vehicle speed changes. Finally, the controller is compared with the traditional model prediction controller through the co-simulation of CARSIM and MATLAB/Simulink, and the results show that the controller has great improvement in terms of tracking accuracy and controller computational load.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.