Abstract
The state of charge (SOC) is a characteristic parameter that indicates the remaining capacity of electric vehicle batteries. It plays a significant role in determining driving range, ensuring operational safety, and extending the service life of battery energy storage systems. Accurate SOC estimation can ensure the safety and reliability of vehicles. To tackle the challenge of precise SOC estimation in complex environments, this study introduces an improved forgetting factor recursive least squares (IFFRLS) method, which integrates the Golden Jackal optimization (GJO) algorithm with the traditional FFRLS method. This integration is grounded in the formulation of a lithium battery state equation derived from a second-order RC equivalent circuit model. Additionally, the research utilizes the interactive multiple model unscented Kalman filter (IMMUKF) algorithm for SOC estimation, with experimental validation conducted under various conditions, including hybrid pulse power characterization (HPPC), urban dynamometer driving schedule (UDDS), and real underwater scenarios. The experimental results demonstrate that the SOC estimation method of lithium batteries based on IFFRLS-IMMUKF exhibits high accuracy and a favorable temperature applicability range.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.