Abstract

In this work, p-Nitrophenol (p-NP) was electro-chemically removed by using a prepared Co3O4/Ti cathode and a BDD anode to achieve the simultaneous reduction of total organic carbon (TOC), total nitrogen (TN) and toxicity. The prepared Co3O4/Ti cathode showed higher electro-activity than the Ti cathode towards p-NP reduction with the removal rate higher than 90.6% but without mineralization. The electro-oxidation removed 84.3% of TOC but none of TN. To develop an optimized process for mineralization and TN removal during p-NP electrolysis, the combination of electro-oxidation and electro-reduction were evaluated by using a dual-chamber cell and a single-chamber cell, respectively. As a result of the re-oxidation and re-reduction in the single-chamber cell, the typically used mode of the simultaneous redox, showed a lower removal of TOC and TN than the combination processes as well as an increased toxicity. The TN removal for both combined modes (21.0%–32.9%) was all higher than that of the mode of reduction because the produced inorganic nitrogen such as ammonia and nitrate could be partially oxidized or reduced to nitrogen gas. The results suggested that the combination process could significantly improve the mineralization and TN reduction for p-NP removal, accompanied with 60.3% decrease of acute toxicity for the reduction after oxidation mode.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call