Abstract
The peridynamic correspondence model provides a general formulation to incorporate the classical local model and, therefore, helps to solve mechanical problems with discontinuities easily. But it suffers from zero-energy mode instability in numerical implementation due to the approximation of deformation gradient tensor. To suppress zero-energy modes, previous stabilized methods were generally more based on adding a supplemental force state derived from bond-based peridynamic theory, which requires a bond-based peridynamic micro-modulus. In this work, we present an improved stabilized method where the stabilization force state is derived directly from the peridynamic correspondence model. Hence, the bond-based peridynamic micro-modulus is abandoned. This improved method needs no extra constant to control the magnitude of stabilization force state and it is suitable for either isotropic or anisotropic materials. Several examples are presented to demonstrate its performance in simulating crack propagation, and numerical results show its efficiency and effectiveness.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.