Abstract

The peridynamic model of a solid does not involve spatial gradients of the displacement field and is therefore well suited for studying defect propagation. Here, bond-based peridynamic theory is used to study the equilibrium and steady propagation of a lattice defect – a kink – in one dimension. The material transforms locally, from one state to another, as the kink passes through. The kink is in equilibrium if the applied force is less than a certain critical value that is calculated, and propagates if it exceeds that value. The kinetic relation giving the propagation speed as a function of the applied force is also derived.In addition, it is shown that the dynamical solutions of certain differential-equation-based models of a continuum are the same as those of the peridynamic model provided the micromodulus function is chosen suitably. A formula for calculating the micromodulus function of the equivalent peridynamic model is derived and illustrated. This ability to replace a differential-equation-based model with a peridynamic one may prove useful when numerically studying more complicated problems such as those involving multiple and interacting defects.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.