Abstract

Spiking neural networks constitute a modern neural network paradigm that overlaps machine learning and computational neurosciences. Spiking neural networks use neuron models that possess a great degree of biological realism. The most realistic model of the neuron is the one created by Alan Lloyd Hodgkin and Andrew Huxley. However, the Hodgkin–Huxley model, while accurate, is computationally very inefficient. Eugene Izhikevich created a simplified neuron model based on the Hodgkin–Huxley equations. This model has better computational efficiency than the original proposed by Hodgkin and Huxley, and yet it can successfully reproduce all known firing patterns. However, there are not many articles dealing with implementations of this model for a functional neural network. This study presents a spiking neural network architecture that utilizes improved Izhikevich neurons with the purpose of evaluating its speed and efficiency. Since the field of spiking neural networks has reinvigorated the interest in biological plausibility, biological realism was an additional goal. The network is tested on the correct classification of logic gates (including XOR) and on the iris dataset. Results and possible improvements are also discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call