Abstract

This article presents an improved iterative learning direct torque control (IL-DTC) to remarkably minimize the torque ripples for a surface-mounted permanent magnet synchronous motor (SPMSM) drive. Unlike the conventional IL-DTC, the proposed IL-DTC significantly attenuates the torque ripples by effectively suppressing the repetitive disturbances using the speed and load torque compensating terms in the improved error dynamics via the improved feedback control terms and iterative learning control terms. Further, it has a simple structure and fast dynamic response due to the direct control of the torque and flux. The stability is verified through the convergence of speed errors to zero as the iteration index goes to infinity. The comparative results via MATLAB/Simulink and a prototype SPMSM test-bed with TI-TMS320F28335-DSP demonstrate the improved control performance (e.g., less torque ripples, faster transient response, smaller overshoot/undershoot, and smaller steady-state error) over the conventional IL-DTC under critical load/speed conditions with severe model parameter uncertainties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.