Abstract

The simultaneous high resolution and accurate mass measurements possible with Fourier transform ion cyclotron resonance mass spectrometry coupled with the gentle ionization of electrospray hold attractions for protein, peptide, and oligonucleotide characterization, including multistage-mass spectrometry measurements for assignment of fragment masses and greater confidence in structural measurements. The detection of cyclotron motion over extended periods of time (in some cases for several minutes) allows higher resolution and mass accuracy. Generally, signal duration has been considered to be limited primarily by background pressure, with ion–neutral collisions leading to the reduction and dephasing of cyclotron motion, causing signal loss. However, recent theoretical work has shown that the ion cloud stability that is a prerequisite for high performance measurements is highly dependent on the electric field generated by the ion cloud, thus giving rise to a minimum number of charges or ions required for extended time-domain signals. The effects of ion population on ion cloud stability and signal duration, and the subsequent effects on resolution and measured isotopic abundances are reported. Individual time-domain signals for bovine insulin isotopic peaks were extracted to allow a comparison of the damping rates for each of these ion clouds and the measured time-domain amplitude maxima are shown to provide a better match with the theoretically predicted isotopic abundances for insulin. These results show that different damping rates of ions of very similar mass, but different ion cloud population sizes, can have dramatic effects on the observed isotopic patterns. Additionally, more accurate, high resolution spectra can be produced by correcting for the effects of the different damping rates that are observed for different ion population sizes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.